Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673795

RESUMEN

The activation of the receptor tyrosine kinase Axl by Gas6 is a major driver of tumorigenesis. Despite recent insights, tumor cell-intrinsic and -extrinsic Axl functions are poorly understood in hepatocellular carcinoma (HCC). Thus, we analyzed the cell-specific aspects of Axl in liver cancer cells and in the tumor microenvironment. We show that tumor-intrinsic Axl expression decreased the survival of mice and elevated the number of pulmonary metastases in a model of resection-based tumor recurrence. Axl expression increased the invasion of hepatospheres by the activation of Akt signaling and a partial epithelial-to-mesenchymal transition (EMT). However, the liver tumor burden of Axl+/+ mice induced by diethylnitrosamine plus carbon tetrachloride was reduced compared to systemic Axl-/- mice. Tumors of Axl+/+ mice were highly infiltrated with cytotoxic cells, suggesting a key immune-modulatory role of Axl. Interestingly, hepatocyte-specific Axl deficiency did not alter T cell infiltration, indicating that these changes are independent of tumor cell-intrinsic Axl. In this context, we observed an upregulation of multiple chemokines in Axl+/+ compared to Axl-/- tumors, correlating with HCC patient data. In line with this, Axl is associated with a cytotoxic immune signature in HCC patients. Together these data show that tumor-intrinsic Axl expression fosters progression, while tumor-extrinsic Axl expression shapes an inflammatory microenvironment.


Asunto(s)
Tirosina Quinasa del Receptor Axl , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Transducción de Señal , Microambiente Tumoral , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Ratones , Humanos , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ratones Noqueados
2.
Mol Oncol ; 18(3): 528-546, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38115217

RESUMEN

Neural stem cells (NSCs) are considered to be valuable candidates for delivering a variety of anti-cancer agents, including oncolytic viruses, to brain tumors. However, owing to the previously reported tumorigenic potential of NSC cell lines after intranasal administration (INA), here we identified the human hepatic stellate cell line LX-2 as a cell type capable of longer resistance to replication of oncolytic adenoviruses (OAVs) as a therapeutic cargo, and that is non-tumorigenic after INA. Our data show that LX-2 cells can longer withstand the OAV XVir-N-31 replication and oncolysis than NSCs. By selecting the highly migratory cell population out of LX-2, an offspring cell line with a higher and more stable capability to migrate was generated. Additionally, as a safety backup, we applied genomic herpes simplex virus thymidine kinase (HSV-TK) integration into LX-2, leading to high vulnerability to ganciclovir (GCV). Histopathological analyses confirmed the absence of neoplasia in the respiratory tracts and brains of immuno-compromised mice 3 months after INA of LX-2 cells. Our data suggest that LX-2 is a novel, robust, and safe cell line for delivering anti-cancer and other therapeutic agents to the brain.


Asunto(s)
Antivirales , Terapia Genética , Ratones , Humanos , Animales , Administración Intranasal , Línea Celular , Sistema Nervioso Central/metabolismo , Timidina Quinasa/genética , Timidina Quinasa/metabolismo , Timidina Quinasa/uso terapéutico
3.
Front Oncol ; 13: 1238883, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37746265

RESUMEN

Introduction: Hepatocellular carcinoma (HCC) patients at advanced stages receive immunotherapy or treatment with tyrosine kinase inhibitors (TKIs) such as Sorafenib (Sora) or Lenvatinib in frontline as well as Regorafenib (Rego) or Cabozantinib in second-line. A major hindrance of TKI therapies is the development of resistance, which renders drug treatment futile and results in HCC progression. Methods: In this study, we addressed the impact of the receptor tyrosine kinase Axl binding to its ligand Gas6 in acquiring refractoriness to TKIs. The initial responses of Axl-positive and Axl-negative cell lines to different TKIs were assessed. Upon inducing resistance, RNA-Seq, gain- and loss-of-function studies were applied to understand and intervene with the molecular basis of refractoriness. Secretome analysis was performed to identify potential biomarkers of resistance. Results: We show that HCC cells exhibiting a mesenchymal-like phenotype were less sensitive to drug treatment, linking TKI resistance to changes in epithelial plasticity. Gas6/Axl expression and activation were upregulated in Rego-resistant HCC cells together with the induction of ErbB receptors, whereas HCC cells lacking Axl failed to stimulate ErbBs. Treatment of Rego-insensitive HCC cells with the pan-ErbB family inhibitor Afatinib rather than with Erlotinib blocking ErbB1 reduced cell viability and clonogenicity. Genetic intervention with ErbB2-4 but not ErbB1 confirmed their crucial involvement in refractoriness to Rego. Furthermore, Rego-resistant HCC cells secreted basic fibroblast growth factor (bFGF) depending on Axl expression. HCC patients treated with Sora in first-line and with Rego in second-line displayed elevated serum levels of bFGF, emphasizing bFGF as a predictive biomarker of TKI treatment. Discussion: Together, these data suggest that the inhibition of ErbBs is synthetic lethal with Rego in Axl-expressing HCC cells, showing a novel vulnerability of HCC.

4.
Cell Death Discov ; 9(1): 282, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532736

RESUMEN

The expression of the receptor tyrosine kinase Axl and its cleavage product soluble Axl (sAxl) is increased in liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). In this multicenter study, we evaluated the diagnostic value of Gas6, the high-affinity ligand of Axl, in patients with chronic liver disease. Levels of sAxl and Gas6, and their albumin (alb) ratios were analyzed in serum samples of patients with biopsy-proven liver fibrosis, end-stage liver disease, HCC, and healthy controls, and were compared to Fibrosis-4 (FIB-4), enhanced liver fibrosis (ELF™) test, Child-Pugh score (CPS), model of end-stage liver disease (MELD) score, hepatic venous pressure gradient, and α-fetoprotein, respectively. A total of 1111 patients (median age 57.8 y, 67.3% male) was analyzed. Gas6/alb showed high diagnostic accuracy for the detection of significant (≥F2: AUC 0.805) to advanced fibrosis (≥F3: AUC 0.818), and was superior to Fib-4 for the detection of cirrhosis (F4: AUC 0.897 vs. 0.878). In addition, Gas6/alb was highly predictive of liver disease severity (Odds ratios for CPS B/C, MELD ≥ 15, and clinically significant portal hypertension (CSPH) were 16.534, 10.258, and 12.115), and was associated with transplant-free survival (Hazard ratio 1.031). Although Gas6 and Gas6/alb showed high diagnostic accuracy for the detection of HCC in comparison to chronic liver disease patients without cirrhosis (AUC 0.852, 0.868), they failed to discriminate between HCC in cirrhosis versus cirrhosis only. In conclusion, Gas6/alb shows a high accuracy to detect significant to advanced fibrosis and cirrhosis, and predicts severity of liver disease including CSPH.

5.
Cancers (Basel) ; 15(9)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37173882

RESUMEN

(1) Background: Activation of the receptor tyrosine kinase Axl by Gas6 fosters oncogenic effects in hepatocellular carcinoma (HCC), associating with increased mortality of patients. The impact of Gas6/Axl signaling on the induction of individual target genes in HCC and its consequences is an open issue. (2) Methods: RNA-seq analysis of Gas6-stimulated Axl-proficient or Axl-deficient HCC cells was used to identify Gas6/Axl targets. Gain- and loss-of-function studies as well as proteomics were employed to characterize the role of PRAME (preferentially expressed antigen in melanoma). Expression of Axl/PRAME was assessed in publicly available HCC patient datasets and in 133 HCC cases. (3) Results: Exploitation of well-characterized HCC models expressing Axl or devoid of Axl allowed the identification of target genes including PRAME. Intervention with Axl signaling or MAPK/ERK1/2 resulted in reduced PRAME expression. PRAME levels were associated with a mesenchymal-like phenotype augmenting 2D cell migration and 3D cell invasion. Interactions with pro-oncogenic proteins such as CCAR1 suggested further tumor-promoting functions of PRAME in HCC. Moreover, PRAME showed elevated expression in Axl-stratified HCC patients, which correlates with vascular invasion and lowered patient survival. (4) Conclusions: PRAME is a bona fide target of Gas6/Axl/ERK signaling linked to EMT and cancer cell invasion in HCC.

6.
Hepatol Commun ; 6(3): 576-592, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34951136

RESUMEN

AXL and its corresponding ligand growth arrest-specific 6 (GAS-6) are critically involved in hepatic immunomodulation and regenerative processes. Pleiotropic inhibitory effects on innate inflammatory responses might essentially involve the shift of macrophage phenotype from a pro-inflammatory M1 to an anti-inflammatory M2. We aimed to assess the relevance of the AXL/GAS-6-pathway in human liver regeneration and, consequently, its association with clinical outcome after hepatic resection. Soluble AXL (sAXL) and GAS-6 levels were analyzed at preoperative and postoperative stages in 154 patients undergoing partial hepatectomy and correlated with clinical outcome. Perioperative dynamics of interleukin (IL)-6, soluble tyrosine-protein kinase MER (sMerTK), soluble CD163 (sCD163), and cytokeratin (CK) 18 were assessed to reflect pathophysiological processes. Preoperatively elevated sAXL and GAS-6 levels predicted postoperative liver dysfunction (area under the curve = 0.721 and 0.722; P < 0.005) and worse clinical outcome. These patients failed to respond with an immediate increase of sAXL and GAS-6 upon induction of liver regeneration. Abolished AXL pathway response resulted in a restricted increase of sCD163, suggesting a disrupted phenotypical switch to regeneratory M2 macrophages. No association with sMerTK was observed. Concomitantly, a distinct association of IL-6 levels with an absent increase of AXL/GAS-6 signaling indicated pronounced postoperative inflammation. This was further supported by increased intrahepatic secondary necrosis as reflected by CK18M65. sAXL and GAS-6 represent not only potent and easily accessible preoperative biomarkers for the postoperative outcome but also AXL/GAS-6 signaling might be of critical relevance in human liver regeneration. Refractory AXL/GAS-6 signaling, due to chronic overactivation/stimulation in the context of underlying liver disease, appears to abolish their immediate release following induction of liver regeneration, causing overwhelming immune activation, presumably via intrahepatic immune regulation.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Regeneración Hepática , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Biomarcadores , Humanos , Inflamación , Péptidos y Proteínas de Señalización Intercelular/inmunología , Interleucina-6 , Proteínas Proto-Oncogénicas/inmunología , Proteínas Tirosina Quinasas Receptoras/inmunología , Transducción de Señal , Tirosina Quinasa del Receptor Axl
7.
Cancers (Basel) ; 13(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34771611

RESUMEN

Hepatocellular carcinoma (HCC) is the major subtype of liver cancer, showing high mortality of patients due to limited therapeutic options at advanced stages of disease. The receptor tyrosine kinases Tyro3, Axl and MerTK-belonging to the TAM family-exert a large impact on various aspects of cancer biology. Binding of the ligands Gas6 or Protein S activates TAM receptors causing homophilic dimerization and heterophilic interactions with other receptors to modulate effector functions. In this context, TAM receptors are major regulators of anti-inflammatory responses and vessel integrity, including platelet aggregation as well as resistance to chemotherapy. In this review, we discuss the relevance of TAM receptors in the intrinsic control of HCC progression by modulating epithelial cell plasticity and by promoting metastatic traits of neoplastic hepatocytes. Depending on different etiologies of HCC, we further describe the overt role of TAM receptors in the extrinsic control of HCC progression by focusing on immune cell infiltration and fibrogenesis. Additionally, we assess TAM receptor functions in the chemoresistance against clinically used tyrosine kinase inhibitors and immune checkpoint blockade in HCC progression. We finally address the question of whether inhibition of TAM receptors can be envisaged for novel therapeutic strategies in HCC.

8.
Cells ; 9(2)2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32089540

RESUMEN

The function and regulation of amyloid-beta (Aß) in healthy and diseased liver remains unexplored. Because Aß reduces the integrity of the blood-brain barrier we have examined its potential role in regulating the sinusoidal permeability of normal and cirrhotic liver. Aß and key proteins that generate (beta-secretase 1 and presenilin-1) and degrade it (neprilysin and myelin basic protein) were decreased in human cirrhotic liver. In culture, activated hepatic stellate cells (HSC) internalized Aß more efficiently than astrocytes and HSC degraded Aß leading to suppressed expression of α-smooth muscle actin (α-SMA), collagen 1 and transforming growth factor ß (TGFß). Aß also upregulated sinusoidal permeability marker endothelial NO synthase (eNOS) and decreased TGFß in cultured human liver sinusoidal endothelial cells (hLSEC). Liver Aß levels also correlate with the expression of eNOS in transgenic Alzheimer's disease mice and in human and rodent cirrhosis/fibrosis. These findings suggest a previously unexplored role of Aß in the maintenance of liver sinusoidal permeability and in protection against cirrhosis/fibrosis via attenuation of HSC activation.


Asunto(s)
Péptidos beta-Amiloides/uso terapéutico , Fibrosis/tratamiento farmacológico , Expresión Génica/genética , Cirrosis Hepática/terapia , Fragmentos de Péptidos/uso terapéutico , Péptidos beta-Amiloides/farmacología , Animales , Modelos Animales de Enfermedad , Humanos , Cirrosis Hepática/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Fragmentos de Péptidos/farmacología , Ratas , Ratas Sprague-Dawley
9.
Cells ; 9(2)2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085378

RESUMEN

The noradrenergic system is proposed to play a prominent role in the pathogenesis of liver fibrosis. While α1- and ß-adrenergic receptors (ARs) are suggested to be involved in a multitude of profibrogenic actions, little is known about α2-AR-mediated effects and their expression pattern during liver fibrosis and cirrhosis. We explored the expression of α2-AR in two models of experimental liver fibrosis. We further evaluated the capacity of the α2-AR blocker mesedin to deactivate hepatic stellate cells (HSCs) and to increase the permeability of human liver sinusoidal endothelial cells (hLSECs). The mRNA of α2a-, α2b-, and α2c-AR subtypes was uniformly upregulated in carbon tetrachloride-treated mice vs the controls, while in bile duct-ligated mice, only α2b-AR increased in response to liver injury. In murine HSCs, mesedin led to a decrease in α-smooth muscle actin, transforming growth factor-ß and α2a-AR expression, which was indicated by RT-qPCR, immunocytochemistry, and Western blot analyses. In a hLSEC line, an increased expression of endothelial nitric oxide synthase was detected along with downregulated transforming growth factor-ß. In conclusion, we suggest that the α2-AR blockade alleviates the activation of HSCs and may increase the permeability of liver sinusoids during liver injury.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Dioxanos/uso terapéutico , Cirrosis Hepática/tratamiento farmacológico , Receptores Adrenérgicos alfa 2/genética , Tiazoles/uso terapéutico , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Animales , Dioxanos/farmacología , Modelos Animales de Enfermedad , Femenino , Humanos , Cirrosis Hepática/fisiopatología , Ratones , Tiazoles/farmacología
10.
Cancers (Basel) ; 11(6)2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31146405

RESUMEN

Most patients with pancreatic ductal adenocarcinoma (PDAC) undergoing curative resection relapse within months, often with liver metastases. The hepatic microenvironment determines induction and reversal of dormancy during metastasis. Both tumor growth and metastasis depend on the Tumor necrosis factor (TNF)-related apoptosis-inducing ligand-receptor 2 (TRAIL-R2). This study investigated the interplay of TRAIL-R2 and the hepatic microenvironment in liver metastases formation and the impact of surgical resection. Although TRAIL-R2-knockdown (PancTu-I shTR2) decreased local relapses and number of macroscopic liver metastases after primary tumor resection in an orthotopic PDAC model, the number of micrometastases was increased. Moreover, abdominal surgery induced liver inflammation involving activation of hepatic stellate cells (HSCs) into hepatic myofibroblasts (HMFs). In coculture with HSCs, proliferation of PancTu-I shTR2 cells was significantly lower compared to PancTu-I shCtrl cells, an effect still observed after switching coculture from HSC to HMF, mimicking surgery-mediated liver inflammation and enhancing cell proliferation. CXCL-8/IL-8 blockade diminished HSC-mediated growth inhibition in PancTu-I shTR2 cells, while Vascular Endothelial Growth Factor (VEGF) neutralization decreased HMF-mediated proliferation. Overall, this study points to an important role of TRAIL-R2 in PDAC cells in the interplay with the hepatic microenvironment during metastasis. Resection of primary PDAC seems to induce liver inflammation, which might contribute to outgrowth of liver metastases.

11.
Oncogenesis ; 8(6): 36, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31097694

RESUMEN

Transforming growth factor ß (TGFß) is deposited in the extracellular space of diverse tissues. Resident fibroblasts respond to TGFß and undergo myofibroblastic differentiation during tissue wound healing and cancer progression. Cancer-associated fibroblasts (CAFs) communicate with tumor cells during cancer progression, under the guidance of TGFß signaling. We report that agonist-activated liver X receptors (LXR) limit the expression of key components of myofibroblast differentiation, including the α-smooth muscle actin (αSMA) gene in liver cancer cells. CAFs derived from hepatocellular carcinoma (HCC) express high αSMA and low LXRα levels, whereas hepatocarcinoma cells exhibit an inverse expression pattern. All hepatoma cells analyzed responded to the LXRα agonist T0901317 by inducing fatty acid synthase (FASN) expression. On the other hand, T0901317 antagonized TGFß-induced fibroblastic marker responses, such as fibronectin and calponin, in a subset of hepatoma cells and all CAFs analyzed. Mechanistically, LXRα antagonized TGFß signaling at the transcriptional level. Smad3 and LXRα were recruited to adjacent DNA motifs of the ACTA2 promoter. Upon cloning the human ACTA2 promoter, we confirmed its transcriptional induction by TGFß stimulation, and LXRα overexpression repressed the promoter activity. Hepatosphere formation by HCC cells was enhanced upon co-culturing with CAFs. T0901317 suppressed the positive effects exerted on hepatosphere growth by CAFs. Taken together, the data suggest that LXRα agonists limit TGFß-dependent CAF differentiation, potentially limiting primary HCC growth.

12.
Stem Cells ; 37(8): 1108-1118, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31108004

RESUMEN

Adult hepatic progenitor cells (HPCs)/oval cells are bipotential progenitors that participate in liver repair responses upon chronic injury. Recent findings highlight HPCs plasticity and importance of the HPCs niche signals to determine their fate during the regenerative process, favoring either fibrogenesis or damage resolution. Transforming growth factor-ß (TGF-ß) and hepatocyte growth factor (HGF) are among the key signals involved in liver regeneration and as component of HPCs niche regulates HPCs biology. Here, we characterize the TGF-ß-triggered epithelial-mesenchymal transition (EMT) response in oval cells, its effects on cell fate in vivo, and the regulatory effect of the HGF/c-Met signaling. Our data show that chronic treatment with TGF-ß triggers a partial EMT in oval cells based on coexpression of epithelial and mesenchymal markers. The phenotypic and functional profiling indicates that TGF-ß-induced EMT is not associated with stemness but rather represents a step forward along hepatic lineage. This phenotypic transition confers advantageous traits to HPCs including survival, migratory/invasive and metabolic benefit, overall enhancing the regenerative potential of oval cells upon transplantation into a carbon tetrachloride-damaged liver. We further uncover a key contribution of the HGF/c-Met pathway to modulate the TGF-ß-mediated EMT response. It allows oval cells expansion after EMT by controlling oxidative stress and apoptosis, likely via Twist regulation, and it counterbalances EMT by maintaining epithelial properties. Our work provides evidence that a coordinated and balanced action of TGF-ß and HGF are critical for achievement of the optimal regenerative potential of HPCs, opening new therapeutic perspectives. Stem Cells 2019;37:1108-1118.


Asunto(s)
Células Madre Adultas/metabolismo , Transición Epitelial-Mesenquimal , Hígado/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Tirosina Quinasa c-Mer/metabolismo , Células Madre Adultas/citología , Animales , Hígado/citología , Ratones , Ratones Noqueados , Factor de Crecimiento Transformador beta/genética , Tirosina Quinasa c-Mer/genética
13.
Cancer Lett ; 453: 95-106, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30930235

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed when liver metastases already emerged. We recently demonstrated that hepatic stromal cells determine the dormancy status along with cancer stem cell (CSC) properties of pancreatic ductal epithelial cells (PDECs) during metastasis. This study investigated the influence of the hepatic microenvironment - and its inflammatory status - on metabolic alterations and how these impact cell growth and CSC-characteristics of PDECs. Coculture with hepatic stellate cells (HSCs), simulating a physiological liver stroma, but not with hepatic myofibroblasts (HMFs) representing liver inflammation promoted expression of Succinate Dehydrogenase subunit B (SDHB) and an oxidative metabolism along with a quiescent phenotype in PDECs. SiRNA-mediated SDHB knockdown increased cell growth and CSC-properties. Moreover, liver micrometastases of tumor bearing KPC mice strongly expressed SDHB while expression of the CSC-marker Nestin was exclusively found in macrometastases. Consistently, RNA-sequencing and in silico modeling revealed significantly altered metabolic fluxes and enhanced SDH activity predominantly in premalignant PDECs in the presence of HSC compared to HMF. Overall, these data emphasize that the hepatic microenvironment determines the metabolism of disseminated PDECs thereby controlling cell growth and CSC-properties during liver metastasis.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , Células Madre Neoplásicas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Animales , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Técnicas de Cocultivo , Regulación hacia Abajo , Humanos , Ratones , Metástasis de la Neoplasia , Micrometástasis de Neoplasia , Células Madre Neoplásicas/metabolismo , Fosforilación Oxidativa , Células del Estroma/metabolismo , Células del Estroma/patología , Succinato Deshidrogenasa/metabolismo
14.
Int J Mol Sci ; 20(5)2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30823658

RESUMEN

Melanoma is a skin tumor with a high tendency for metastasis and thus is one of the deadliest cancers worldwide. Here, we investigated the expression of the scavenger receptor class B type 1 (SR-BI), a high-density lipoprotein (HDL) receptor, and tested for its role in melanoma pigmentation as well as extracellular vesicle release. We first analyzed the expression of SR-BI in patient samples and found a strong correlation with MITF expression as well as with the melanin synthesis pathway. Hence, we asked whether SR-BI could also play a role for the secretory pathway in metastatic melanoma cells. Interestingly, gain- and loss-of-function of SR-BI revealed regulation of the proto-oncogene MET. In line, SR-BI knockdown reduced expression of the small GTPase RABB22A, the ESCRT-II protein VPS25, and SNAP25, a member of the SNARE complex. Accordingly, reduced overall extracellular vesicle generation was detected upon loss of SR-BI. In summary, SR-BI expression in human melanoma enhances the formation and transport of extracellular vesicles, thereby contributing to the metastatic phenotype. Therapeutic targeting of SR-BI would not only interfere with cholesterol uptake, but also with the secretory pathway, therefore suppressing a key hallmark of the metastatic program.


Asunto(s)
Vesículas Extracelulares/metabolismo , Melanoma/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Receptores Depuradores de Clase B/genética , Línea Celular Tumoral , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Proto-Oncogenes Mas , Receptores Depuradores de Clase B/metabolismo , Proteína 25 Asociada a Sinaptosomas/genética , Proteína 25 Asociada a Sinaptosomas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
15.
Hepatology ; 69(1): 222-236, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30014484

RESUMEN

Transforming growth factor (TGF)-ß suppresses early hepatocellular carcinoma (HCC) development but triggers pro-oncogenic abilities at later stages. Recent data suggest that the receptor tyrosine kinase Axl causes a TGF-ß switch toward dedifferentiation and invasion of HCC cells. Here, we analyzed two human cellular HCC models with opposing phenotypes in response to TGF-ß. Both HCC models showed reduced proliferation and clonogenic growth behavior following TGF-ß stimulation, although they exhibited differences in chemosensitivity and migratory abilities, suggesting that HCC cells evade traits of anti-oncogenic TGF-ß. Transcriptome profiling revealed differential regulation of the chemokine CXCL5, which positively correlated with TGF-ß expression in HCC patients. The expression and secretion of CXCL5 was dependent on Axl expression, suggesting that CXCL5 is a TGF-ß target gene collaborating with Axl signaling. Loss of either TGF-ß or Axl signaling abrogated CXCL5-dependent attraction of neutrophils. In mice, tumor formation of transplanted HCC cells relied on CXCL5 expression. In HCC patients, high levels of Axl and CXCL5 correlated with advanced tumor stages, recruitment of neutrophils into HCC tissue, and reduced survival. Conclusion: The synergy of TGF-ß and Axl induces CXCL5 secretion, causing the infiltration of neutrophils into HCC tissue. Intervention with TGF-ß/Axl/CXCL5 signaling may be an effective therapeutic strategy to combat HCC progression in TGF-ß-positive patients.


Asunto(s)
Carcinoma Hepatocelular/inmunología , Quimiocina CXCL5/fisiología , Neoplasias Hepáticas/inmunología , Infiltración Neutrófila , Proteínas Proto-Oncogénicas/fisiología , Proteínas Tirosina Quinasas Receptoras/fisiología , Factor de Crecimiento Transformador beta/fisiología , Animales , Humanos , Ratones , Células Tumorales Cultivadas , Tirosina Quinasa del Receptor Axl
16.
Int J Mol Sci ; 19(12)2018 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-30567378

RESUMEN

Signaling of the receptor tyrosine kinase Axl and its ligand Gas6 is crucially involved in the development of liver fibrosis and hepatocellular carcinoma (HCC) by activation of hepatic stellate cells and modulation of hepatocyte differentiation. Shedding of Axl's ectodomain leads to the release of soluble Axl (sAxl), which is increased in advanced fibrosis and in early-to-late stage HCC in the presence and absence of cirrhosis. Here, we focus on the dynamics of Axl receptor shedding and delineate possible scenarios how Axl signaling might act as driver of fibrosis progression and HCC development. Based on experimental and clinical data, we discuss the consequences of modifying Axl signaling by sAxl cleavage, as well as cellular strategies to escape from antagonizing effects of Axl shedding by the involvement of the hepatic microenvironment. We emphasize a correlation between free Gas6 and free sAxl levels favoring abundant Gas6/Axl signaling in advanced fibrosis and HCC. The raised scenario provides a solid basis for theranostics allowing the use of sAxl as an accurate diagnostic biomarker of liver cirrhosis and HCC, as well as Axl receptor signaling for therapeutic intervention in stratified HCC patients.


Asunto(s)
Carcinoma Hepatocelular/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Células Estrelladas Hepáticas/patología , Humanos , Cirrosis Hepática/patología , Cirrosis Hepática/terapia , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Terapia Molecular Dirigida , Transducción de Señal/genética , Nanomedicina Teranóstica/tendencias , Tirosina Quinasa del Receptor Axl
17.
Oncotarget ; 9(60): 31771-31786, 2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-30167093

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at advanced stages with the liver as the main site of metastases. The hepatic microenvironment has been shown to determine outgrowth of liver metastases. Cancer stem cells (CSCs) are essential for initiation and maintenance of tumors and acquisition of CSC-properties has been linked to Epithelial-Mesenchymal-Transition. Thus, this study aimed at elucidating whether and how the hepatic microenvironment impacts stemness and differentiation of disseminated pancreatic ductal epithelial cells (PDECs). Culture of premalignant H6c7-kras and malignant Panc1 PDECs together with hepatocytes and hepatic stellate cells (HSC) promoted self-renewal capacity of both PDEC lines. This was indicated by higher colony formation compared to cells cocultured with hepatocytes and hepatic myofibroblasts. Different Panc1 colony types derived from an HSC-enriched coculture were expanded and characterized revealing that holoclones exhibited an enhanced colony formation ability, elevated and exclusive expression of the CSC-marker Nestin and a more pronounced mesenchymal phenotype compared to paraclones. Moreover, Panc1 holoclone cells showed an increased tumorigenic potential in vivo leading to formation of undifferentiated tumors in 7/10 animals, while inoculation of paraclone cells only led to formation of tumors in 2/10 animals being smaller in number and size. Holoclone tumors were characterized by elevated expression of mesenchymal markers, complete loss of E-cadherin expression and high expression of Nestin. Finally, Etanercept-mediated TNF-α blocking partly reversed the mesenchymal CSC-phenotype of Panc1 holoclone cells. Overall, these data provide evidence that the hepatic microenvironment determines stemness and differentiation of PDECs, thereby substantially contributing to liver metastases of PDAC.

18.
Oncol Lett ; 15(2): 2441-2450, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29434956

RESUMEN

Genomic editing using the CRISPR/Cas9 technology allows selective interference with gene expression. With this method, a multitude of haploid and diploid cells from different organisms have been employed to successfully generate knockouts of genes coding for proteins or small RNAs. Yet, cancer cells exhibiting an aberrant ploidy are considered to be less accessible to CRISPR/Cas9-mediated genomic editing, as amplifications of the targeted gene locus could hamper its effectiveness. Here we examined the suitability of CRISPR/Cas9 to knockout the receptor tyrosine kinase Axl in the human hepatoma cell lines HLF and SNU449. The genomic editing events were validated in two single cell clones each from putative HLF and SNU449 knockout cells (HLF-Axl--1, HLF-Axl--2, SNU449-Axl--1, SNU449-Axl--2). Sequence analysis of respective AXL loci revealed one to six editing events in each individual Axl- clone. The majority of insertions and deletions in the AXL gene at exon 7/8 resulted in a frameshift and thus a premature stop in the coding region. However, one genomic editing event led to an insertion of two amino acids resulting in an altered protein sequence rather than in a frameshift in the AXL locus of the SNU449-Axl--1 cells. Notably, while no Axl protein expression could be detected by immunoblotting in all four cell clones, both expression of total Axl as well as release of soluble Axl into the supernatant was observed by ELISA in incompletely edited SNU449-Axl--1 cells. Importantly, a comparative genomic hybridization array revealed comparable genomic changes in Axl knockout cells as well as in cells expressing Cas9 nickase without guide RNAs in SNU449 and HLF cells, indicating vast alterations in genomic DNA triggered by nickase. Together, these data show that the dynamics of CRISPR/Cas9 may cause incomplete editing events in cancer cell lines, as gene copy numbers vary based on genomic heterogeneity.

19.
Mol Cancer Res ; 16(1): 135-146, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28974560

RESUMEN

Metastatic melanoma is hallmarked by elevated glycolytic flux and alterations in cholesterol homeostasis. The contribution of cholesterol transporting receptors for the maintenance of a migratory and invasive phenotype is not well defined. Here, the scavenger receptor class B type I (SCARB1/SR-BI), a high-density lipoprotein (HDL) receptor, was identified as an estimator of melanoma progression in patients. We further aimed to identify the SR-BI-controlled gene expression signature and its related cellular phenotypes. On the basis of whole transcriptome analysis, it was found that SR-BI knockdown, but not functional inhibition of its cholesterol-transporting capacity, perturbed the metastasis-associated epithelial-to-mesenchymal transition (EMT) phenotype. Furthermore, SR-BI knockdown was accompanied by decreased migration and invasion of melanoma cells and reduced xenograft tumor growth. STAT5 is an important mediator of the EMT process and loss of SR-BI resulted in decreased glycosylation, reduced DNA binding, and target gene expression of STAT5. When human metastatic melanoma clinical specimens were analyzed for the abundance of SR-BI and STAT5 protein, a positive correlation was found. Finally, a novel SR-BI-regulated gene profile was determined, which discriminates metastatic from nonmetastatic melanoma specimens indicating that SR-BI drives gene expression contributing to growth at metastatic sites. Overall, these results demonstrate that SR-BI is a highly expressed receptor in human metastatic melanoma and is crucial for the maintenance of the metastatic phenotype.Implications: High SR-BI expression in melanoma is linked with increased cellular glycosylation and hence is essential for a metastasis-specific expression signature. Mol Cancer Res; 16(1); 135-46. ©2017 AACR.


Asunto(s)
Melanoma/metabolismo , Factor de Transcripción STAT5/metabolismo , Receptores Depuradores de Clase B/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Femenino , Glicosilación , Xenoinjertos , Humanos , Melanoma/genética , Melanoma/patología , Ratones , Ratones SCID , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de LDL/biosíntesis , Receptores Depuradores de Clase B/biosíntesis , Receptores Depuradores de Clase B/genética , Transfección
20.
Arch Toxicol ; 92(2): 921-934, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29218508

RESUMEN

Cell lines which are currently used in genotoxicity tests lack enzymes which activate/detoxify mutagens. Therefore, rodent-derived liver preparations are used which reflect their metabolism in humans only partly; as a consequence misleading results are often obtained. Previous findings suggest that certain liver cell lines express phase I/II enzymes and detect promutagens without activation; however, their use is hampered by different shortcomings. The aim of this study was the identification of a suitable cell line. The sensitivity of twelve hepatic cell lines was investigated in single cell gel electrophoresis assays. Furthermore, characteristics of these lines were studied which are relevant for their use in genotoxicity assays (mitotic activity, p53 status, chromosome number, and stability). Three lines (HuH6, HCC1.2, and HepG2) detected representatives of five classes of promutagens, namely, IQ and PhIP (HAAs), B(a)P (PAH), NDMA (nitrosamine), and AFB1 (aflatoxin), and were sensitive towards reactive oxygen species (ROS). In contrast, the commercially available line HepaRG, postulated to be a surrogate for hepatocytes and an ideal tool for mutagenicity tests, did not detect IQ and was relatively insensitive towards ROS. All other lines failed to detect two or more compounds. HCC1.2 cells have a high and unstable chromosome number and mutated p53, these features distract from its use in routine screening. HepG2 was frequently employed in earlier studies, but pronounced inter-laboratory variations were observed. HuH6 was never used in genotoxicity experiments and is highly promising, it has a stable karyotype and we demonstrated that the results of genotoxicity experiments are reproducible.


Asunto(s)
Hígado/diagnóstico por imagen , Pruebas de Mutagenicidad/métodos , Mutágenos/análisis , Aflatoxina B1/toxicidad , Benzo(a)pireno/toxicidad , Línea Celular Tumoral , Dimetilnitrosamina/toxicidad , Humanos , Peróxido de Hidrógeno/toxicidad , Imidazoles/toxicidad , Inactivación Metabólica , Hígado/citología , Quinolinas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...